New EPD publication

sketch from Elucidating the role of electrophoretic mobilityElucidating the role of electrophoretic mobility for increasing yield in the electrophoretic deposition of nanomaterials by Prabal Tiwari, Noah D.Ferson and Jennifer S. Andrew (Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, United States)

Journal of Colloid and Interface Science 570 (2020) 109-115

This interesting new EPD paper explains how the particle's electrophoretic mobility decreases during deposition and can be controlled by replenishment of suspension which allowed us to maintain a constant deposition rate.

 

New Papers 2017

 

1.       Amponsah Kyeremateng, N., Brousse, T., & Pech, D. (2016). Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nature Publishing Group, 12(1), 7–15. https://doi.org/10.1038/NNANO.2016.196

 

2.       Anke, B., Rohloff, M., Willinger, M. G., Hetaba, W., Fischer, A., & Lerch, M. (2017). Improved photoelectrochemical performance of bismuth vanadate by partial O/F-substitution. Solid State Sciences, 63, 1–8. https://doi.org/10.1016/j.solidstatesciences.2016.11.004

  

3.       Argüello, J. A., Cerpa, A., Alanbari, M. H., Fariñas, J. C., & Moreno, R. (2017). Preparation of manganese oxide - graphite electrodes by electrophoretic deposition. Ceramics International, 43(3), 3231–3237. https://doi.org/10.1016/j.ceramint.2016.11.150

 

4.       Awasthi, S., Maurya, R., Pandey, C. P., & Balani, K. (2016). Interfacial mechanics of carbonaceous reinforcements in electrophoretically deposited nickel coatings. Surface and Coatings Technology, 310, 79–86. https://doi.org/10.1016/j.surfcoat.2016.12.039

  

5.       Bhardwaj, S., Pal, A., Chatterjee, K., Chowdhury, P., Saha, S., Barman, A., … Biswas, S. (2017). Electrophoretic deposition of plasmonic nanocomposite for the fabrication of dye-sensitized solar cells, 55(January), 73–80

 

6.       Cai, J., Lv, C., & Watanabe, A. (2017). High-performance all-solid-state flexible carbon/TiO 2 micro-supercapacitors with photo-rechargeable capability. RSC Adv., 7(1), 415–422. https://doi.org/10.1039/C6RA25136F

 

7.       Cao, L. (2017). Novel MoS2-modified AgVO3 composites with remarkably enhanced photocatalytic activity under visible-light irradiation. Materials Letters, 188(November 2016), 252–256. https://doi.org/10.1016/j.matlet.2016.10.120

 

8.       Cao, X., Chen, L., Guo, S., Chen, R., Yan, G., & Yan, A. (2016). Impact of TbF3 diffusion on coercivity and microstructure in sintered Nd-Fe-B magnets by electrophoretic deposition. Scripta Materialia, 116, 40–43. https://doi.org/10.1016/j.scriptamat.2016.01.034

  

9.       Chava, R. K., Lee, W.-M., Oh, S.-Y., Jeong, K.-U., & Yu, Y.-T. (2017). Improvement in light harvesting and device performance of dye sensitized solar cells using electrophoretic deposited hollow TiO2 NPs scattering layer. Solar Energy Materials and Solar Cells, 161(December 2016), 255–262. https://doi.org/10.1016/j.solmat.2016.11.037

 

10.   Chellappa, M., & Vijayalakshmi, U. (2017). Electrophoretic deposition of silica and its composite coatings on Ti-6Al-4V, and its in vitro corrosion behaviour for biomedical applications. Materials Science and Engineering: C, 71, 879–890. https://doi.org/10.1016/j.msec.2016.10.075

  

11.   Chen, S., Shen, B., Chen, Y., & Sun, F. (2017). Synergistic friction-reducing and anti-wear behaviors of graphene with micro- and nano-crystalline diamond films. Diamond and Related Materials, 73, 25–32. https://doi.org/10.1016/j.diamond.2016.11.012

 

12.   Clifford, A., Luo, D., & Zhitomirsky, I. (2017). Colloids and Surfaces A : Physicochemical and Engineering Aspects Colloidal strategies for electrophoretic deposition of organic-inorganic composites for biomedical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 516, 219–225. https://doi.org/10.1016/j.colsurfa.2016.12.039

  

13.   Daryakenari, A. A., Hosseini, D., Mirfasih, M. H., Apostoluk, A., Müller, C. R., & Delaunay, J.-J. (2017). Formation of NiO nanoparticle-attached nanographitic flake layers deposited by pulsed electrophoretic deposition for ethanol electro-oxidation. Journal of Alloys and Compounds, 698, 571–576. https://doi.org/10.1016/j.jallcom.2016.12.136

 

14.   Das, D., Bagchi, B., & Basu, R. N. (2017). Nanostructured zirconia thin film fabricated by electrophoretic deposition technique. Journal of Alloys and Compounds, 693, 1220–1230. https://doi.org/http://dx.doi.org/10.1016/j.jallcom.2016.10.088

 

15.   Ghasemi, S., Hosseini, S. R., & Mousavi, F. (2017). Electrophoretic deposition of graphene nanosheets: A suitable method for fabrication of silver-graphene counter electrode for dye-sensitized solar cell. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520, 477–487. https://doi.org/10.1016/j.colsurfa.2017.02.004

  

16.   Gholampoor, M., Movassagh-Alanagh, F., & Salimkhani, H. (2017). Fabrication of nano-Fe3O4 3D structure on carbon fibers as a microwave absorber and EMI shielding composite by modified EPD method. Solid State Sciences, 64, 51–61. https://doi.org/10.1016/j.solidstatesciences.2016.12.005

 

17.   Giera, B., Zepeda-Ruiz, L. A., Pascall, A. J., & Weisgraber, T. H. (2017). Mesoscale Particle-Based Model of Electrophoretic Deposition. Langmuir, acs.langmuir.6b04010. https://doi.org/10.1021/acs.langmuir.6b04010

  

18.   Gonz??lez, Z., Flox, C., Blanco, C., Granda, M., Morante, J. R., Men??ndez, R., & Santamar??a, R. (2017). Outstanding electrochemical performance of a graphene-modified graphite felt for vanadium redox flow battery application. Journal of Power Sources, 338, 155–162. https://doi.org/10.1016/j.jpowsour.2016.10.069

 

19.   Guo, X., & Li, X. (2017). An expanding horizon: Facile fabrication of highly superhydrophobic coatings. Materials Letters, 186(September 2016), 357–360. https://doi.org/10.1016/j.matlet.2016.09.098

  

20.   Höhn, S., Braem, A., Neirinck, B., & Virtanen, S. (2017). Albumin coatings by alternating current electrophoretic deposition for improving corrosion resistance and bioactivity of titanium implants. Materials Science and Engineering C, 73, 798–807. https://doi.org/10.1016/j.msec.2016.12.129

 

21.   Huo, C., Guo, L., Li, Y., Wang, C., Feng, L., Liu, N., … Song, Q. (2016). Effect of co-deposited SiC nanowires and carbon nanotubes on oxidation resistance for SiC-coated C/C composites. Ceramics International, 43(2), 1722–1730. https://doi.org/10.1016/j.ceramint.2016.08.196

  

22.   Jiang, J., Yao, X., Xu, C., Su, Y., Zhou, L., & Deng, C. (2017). Influence of electrochemical oxidation of carbon fiber on the mechanical properties of carbon fiber/graphene oxide/epoxy composites. Composites Part A: Applied Science and Manufacturing. https://doi.org/10.1016/j.compositesa.2017.02.004

 

23.   Jothi Ramalingam, R. (2017). Surface and Electrochemical Characterization of N-Fe-doped- TiO2 Nanoparticle Prepared by Hydrothermal and Facile Electro-Deposition Method for Visible Light Driven Pollutant Removal. International Journal of Electrochemical Science, 12, 797–811. https://doi.org/10.20964/2017.01.100

  

24.   Kalinina, E. G., Pikalova, E. Y., Kolchugin, A. A., Pikalov, S. M., & Kaigorodov, A. S. (2017). Cyclic electrophoretic deposition of electrolyte thin-films on the porous cathode substrate utilizing stable suspensions of nanopowders. Solid State Ionics, 1–7. https://doi.org/10.1016/j.ssi.2017.01.016

 

25.   Khalili, V., Khalil-Allafi, J., Frenzel, J., & Eggeler, G. (2017). Bioactivity and electrochemical behavior of hydroxyapatite-silicon-multi walled carbon nano-tubes composite coatings synthesized by EPD on NiTi alloys in simulated body fluid. Materials Science and Engineering: C, 71, 473–482. https://doi.org/10.1016/j.msec.2016.10.036

  

26.   Koenen, S., Rehbock, C., Heissler, H. E., Angelov, S. D., Schwabe, K., Krauss, J. K., & Barcikowski, S. (2017). Optimizing inVitro Impedance and Physico-Chemical Properties of Neural Electrodes by Electrophoretic Deposition of Pt Nanoparticles. ChemPhysChem. https://doi.org/10.1002/cphc.201601180

 

27.   Maaoui, H., Singh, S. K., Teodorescu, F., Coffinier, Y., Barras, A., Chtourou, R., … Boukherroub, R. (2017). Copper oxide supported on three-dimensional ammonia-doped porous reduced graphene oxide prepared through electrophoretic deposition for non-enzymatic glucose sensing. Electrochimica Acta, 224, 346–354. https://doi.org/10.1016/j.electacta.2016.12.078

  

28.   Mehrabi-Matin, B., Shahrokhian, S., & Iraji-zad, A. (2017). Silver Fiber Fabric as the Current Collector for Preparation of Graphene- Based Supercapacitors. Electrochimica Acta, 227, 246–254. https://doi.org/10.1016/j.electacta.2017.01.031

 

29.   Mehrizadeh, H., Niaei, A., Tseng, H. H., Salari, D., & Khataee, A. (2017). Synthesis of ZnFe2O4 nanoparticles for photocatalytic removal of toluene from gas phase in the annular reactor. Journal of Photochemistry and Photobiology A: Chemistry, 332, 188–195. https://doi.org/10.1016/j.jphotochem.2016.08.028

  

30.   Narkevica, I., Stradina, L., Stipniece, L., & Ozolins, J. (2016). Electrophoretic Deposition of TiO<sub>2</sub> Nanoparticles on Dense TiO<sub>2-x </sub>Ceramic Electrodes. Key Engineering Materials, 721, 177–181. https://doi.org/10.4028/www.scientific.net/KEM.721.177

 

31.   Qi, J., Xiong, H., Zhang, J., Zhang, Q., Li, Y., & Wang, H. (2017). Effects of release agents on the film morphology of TiO2 photoanodes for FDSSCs by the roll-to-roll method. Journal of Alloys and Compounds, 702, 366–371. https://doi.org/10.1016/j.jallcom.2017.01.220

  

32.   Ramskogler, C., Cordero, L., Warchomicka, F., Boccaccini, A. R., & Sommitsch, C. (2016). Biocompatible Ceramic-Biopolymer Coatings Obtained by Electrophoretic Deposition on Electron Beam Structured Titanium Alloy Surfaces. Materials Science Forum, 879, 1552–1557. https://doi.org/10.4028/www.scientific.net/MSF.879.1552

 

33.   Raphael, E., Jara, D. H., & Schiavon, M. A. (2017). Optimizing photovoltaic performance in CuInS 2 and CdS quantum dot-sensitized solar cells by using an agar-based gel polymer electrolyte. RSC Adv., 7(11), 6492–6500. https://doi.org/10.1039/C6RA27635K

  

34.   Rosete, M. M., Zosa, M. H., & Sarmago, R. V. (2017). Effect of Potassium Chloride as a Supporting Electrolyte on the Dispersion Towards the Fabrication of Films by Electrophoretic Deposition of Bi2Sr2CaCu2 O 8 in Ethanol. Journal of Superconductivity and Novel Magnetism, 3–8. https://doi.org/10.1007/s10948-017-3986-8

 

35.   Sandil, D., Kumar, S., Arora, K., Srivastava, S., Malhotra, B. D., Sharma, S. C., & Puri, N. K. (2017). Biofunctionalized nanostructured tungsten trioxide based sensor for cardiac biomarker detection. Materials Letters, 186(June 2016), 202–205. https://doi.org/10.1016/j.matlet.2016.09.107

  

36.   Si, W., Pergolesi, D., Haydous, F., Fluri, A., Wokaun, A., & Lippert, T. (2017). Investigating the behavior of various cocatalysts on LaTaON 2 photoanode for visible light water splitting. Phys. Chem. Chem. Phys., 19(1), 656–662. https://doi.org/10.1039/C6CP07253D

 

37.   Singh, R., Kashyap, S., Kumar, S., Abraham, S., Gupta, T. K., Kayastha, A. M., … Singh, R. K. (2017). Excellent storage stability and sensitive detection of neurotoxin quinolinic acid. Biosensors and Bioelectronics, 90, 224–229. https://doi.org/10.1016/j.bios.2016.11.053

  

38.   Singh, R., Kashyap, S., Kumar, S., Abraham, S., Gupta, T. K., Kayastha, A. M., … Singh, R. K. (2017). Excellent storage stability and sensitive detection of neurotoxin quinolinic acid. Biosensors and Bioelectronics, 90(November 2016), 224–229. https://doi.org/10.1016/j.bios.2016.11.053

 

39.   Solanki, P. R., Singh, J., Rupavali, B., Tiwari, S., & Malhotra, B. D. (2017). Bismuth oxide nanorods based immunosensor for mycotoxin detection. Materials Science and Engineering C, 70, 564–571. https://doi.org/10.1016/j.msec.2016.09.027

  

40.   Su, J.-Y., Jin, G.-P., Chen, T., Liu, X.-D., Chen, C.-N., & Tian, J.-J. (2017). The characterization and application of prussian blue at graphene coated carbon fibers in a separated adsorption and electrically switched ion exchange desorption processes of cesium. Electrochimica Acta, 230, 399–406. https://doi.org/10.1016/j.electacta.2017.02.027

 

41.   Sui, X., Shi, J., Yao, H., Xu, Z., Chen, L., Li, X., … Deng, H. (2017). Interfacial and fatigue-resistant synergetic enhancement of carbon fiber/epoxy hierarchical composites via an electrophoresis deposited carbon nanotube-toughened transition layer. Composites Part A: Applied Science and Manufacturing, 92, 134–144. https://doi.org/10.1016/j.compositesa.2016.11.004

  

42.   Tian, Q., Rivera-Castaneda, L., & Liu, H. (2017). Optimization of nano-hydroxyapatite/poly(lactic-co-glycolic acid) coatings on magnesium substrates using one-step electrophoretic deposition. Materials Letters, 186(September 2016), 12–16. https://doi.org/10.1016/j.matlet.2016.09.072

 

43.   Ueno, K., Negishi, H., Miyamoto, M., Uemiya, S., & Oumi, Y. (2017). Effect of deposition seed crystal amount on the α-Al2O3 support and separation performance of silicalite-1 membranes for acetic acid/water mixtures. Separation and Purification Technology, 174, 57–65. https://doi.org/10.1016/j.seppur.2016.08.045

  

44.   Wang, C.-H., Qin, D.-D., Shan, D.-L., Gu, J., Yan, Y., Chen, J., … Lu, X.-Q. (2017). Assembly of g-C 3 N 4 -based type II and Z-scheme heterojunction anodes with improved charge separation for photoelectrojunction water oxidation. Phys. Chem. Chem. Phys., 19, 4507–4515. https://doi.org/10.1039/C6CP08066A

 

45.   Wang, S., Dou, K., Zou, Y., Dong, Y., Li, J., Ju, D., & Zeng, H. (2016). Assembling tungsten oxide hydrate nanocrystal colloids formed by laser ablation in liquid into fast-response electrochromic films. Journal of Colloid and Interface Science, 489, 85–91. https://doi.org/10.1016/j.jcis.2016.08.072

  

46.   Webster, T. J., & Bhardwaj, G. (2017). Reduced bacterial growth and increased osteoblast proliferation on titanium with a nanophase TiO 2 surface treatment. International Journal of Nanomedicine, 12, 363–369. https://doi.org/10.2147/IJN.S116105

 

47.   Weisbart, C., Raghavan, S., Muralidharan, K., & Potter, B. G. (2017). Electrocoagulation driven fabrication of graphene oxide films. Carbon, 116, 318–324. https://doi.org/10.1016/j.carbon.2017.01.094

  

48.   Xiang, Q., & Zhang, D. (2017). Fabrication of molybdenum trioxide (MoO3) coating by electrophoretic deposition. Journal of Materials Science: Materials in Electronics, 28(10), 7449–7453. https://doi.org/10.1007/s10854-017-6434-4